
CS16 Week 2 Part 2
Kyle Dewey

Thursday, July 5, 12

Overview

• Type coercion and casting

• More on assignment

• Pre/post increment/decrement

•scanf

• Constants

• Math library

• Errors

Thursday, July 5, 12

Type Coercion /
Casting

Thursday, July 5, 12

Last time...

• Data is internally represented as a series of
bits

• The data type (i.e. char, int, etc.)
determines how many bits are used

Thursday, July 5, 12

Recall

unsigned char x = 255;
x = x + 1;

11111111
+ 1

100000000

Size of Data Type

Thursday, July 5, 12

What about...

unsigned char x = 255;
unsigned int y;
y = x + 1;
// what is the value of y?

• Assume integers (int) are 4 bytes (32
bits)

Thursday, July 5, 12

Data Sizes

• It doesn’t matter where it has been

• It only matters where it’s going

Thursday, July 5, 12

Binary Operators

• When dealing with variables/expressions of
different types, there are different rules for
different operators

• Always go for the “bigger” type

• double > int > char

• The “bigger” type will be the type of the
expression

• Going for a bigger type is called “type
coercion”

Thursday, July 5, 12

Division

int x = 5 / 2;
int y = 6 / 2;
int z = 7 / 0;

double x = 5 / 2;
double y = 6 / 2;
double z = 7 / 0;

Thursday, July 5, 12

Division

double x = 5 / 2;
double y = 6 / 2;
double z = 7 / 0;

double x = 5 / 2.0;
double y = 6 / 2.0;
double z = 7 / 0.0;

Thursday, July 5, 12

Question

double x = 5.5;
x = x + 6 / 4;
// what is the value of x?

Thursday, July 5, 12

Answer

x = x + 6 / 4;
x = x + (6 / 4);
x = (x + (6 / 4);
(x = (x + (6 / 4));

double x = 5.5;

Thursday, July 5, 12

Answer
(x = (x + (6 / 4));

=

x +

x /

6 4

Thursday, July 5, 12

Answer
(x = (x + (6 / 4));

=

x +

x /

6 4

intint

intdouble

doubledouble

double

Thursday, July 5, 12

Answer
(x = (x + (6 / 4));

=

x +

x /

6 4

46

15.5

6.5??

6.5

Thursday, July 5, 12

Question

double x = 5.5;
x = x + 6 / 4.0;
// what is the value of x?

Thursday, July 5, 12

Answer
(x = (x + (6 / 4.0));

=

x +

x /

6 4

Thursday, July 5, 12

Answer
(x = (x + (6 / 4.0));

=

x +

x /

6 4.0

doubleint

doubledouble

doubledouble

double

Thursday, July 5, 12

Answer
(x = (x + (6 / 4.0));

=

x +

x /

6 4

46

1.55.5

7.0??

7.0

Thursday, July 5, 12

Casting

• Sometimes we want to specify the type
explicitly

• Especially when we want to go down the
chain (i.e. double to int)

• This can be done by putting the type itself
in parenthesis before the operation

Thursday, July 5, 12

Casting Examples

(double)5 // 5.0
(int)5.5 // 5? 6?
(unsigned int)((unsigned char)255)
(unsigned int)((unsigned char)256)

Thursday, July 5, 12

More on Expressions

Thursday, July 5, 12

Last time...

• Expressions return values

• Arithmetic consists of nested expressions

3 * 2 + 7 - 8 * 2

Thursday, July 5, 12

Assignment

int x;
x = 6 * 7;

Thursday, July 5, 12

Assignment

• Perfectly legal C:

int x, y;
x = y = 5 + 1;
// what are the values
// of x and y?

Thursday, July 5, 12

Assignment Expression

x = y = 5 + 1;
x = y = (5 + 1);
x = (y = (5 + 1));
(x = (y = (5 + 1)));

Thursday, July 5, 12

Question

• Is this legal C?

int x, y;
x = y + 1 = 3 * 2;

Thursday, July 5, 12

Answer

• Is this legal C?

int x, y;
x = y + 1 = 3 * 2;

• No; the portion y + 1 = 3 * 2 has no
meaning

Thursday, July 5, 12

Question

int x, y;
x = 5 + (y = 2 + 1) * 3;
// what are the values
// of x and y?

Thursday, July 5, 12

Question

int x, y;
x = 5 + y = 2 + 1 * 3;
// what are the values
// of x and y?

Thursday, July 5, 12

Answer

int x, y;
x = 5 + y = 2 + 1 * 3;
// what are the values
// of x and y?

• Trick question!

• This is an ambiguity that needs parenthesis

Thursday, July 5, 12

Precedences

1.()

2.*, /, %

3.+, -

4.=

Thursday, July 5, 12

Pre/post increment/
decrement

Thursday, July 5, 12

Pre/post inc/dec

• Specifically for variables

• Adding or subtracting one is so common
there is are special shorthand operators for
it

• Add one: ++

• Subtract one: --

Thursday, July 5, 12

Pre-increment

•++x

• Semantics: add one to x and return the
resulting value

Thursday, July 5, 12

Pre-decrement

•--x

• Semantics: subtract one from x and return
the resulting value

Thursday, July 5, 12

Post-increment

•x++

• Semantics: return the current value of x
and then add one to it

Thursday, July 5, 12

Post-decrement

•x--

• Semantics: return the current value of x
and then subtract one from it

Thursday, July 5, 12

Example #1

int x = 5;
int y = x++ + 1;
// what is x and y?

Thursday, July 5, 12

Example #2

int x = 5;
int y = ++x + 1;
// what is x and y?

Thursday, July 5, 12

Personally...

• Putting these directly in expressions can be
very confusing

• Shorthand for x = x + 1, etc.

• Aside: people can introduce subtle bugs
because of undefined behavior

Thursday, July 5, 12

Subtle Bug
int x = 0;
int y = x++ + x--;

•ch: -1

•gcc: 0

Thursday, July 5, 12

Precedences

1.()

2.++,--

3.*, /, %

4.+, -

5.=

Thursday, July 5, 12

scanf

Thursday, July 5, 12

scanf

• The dual to printf

• Instead of printing something to the
terminal, it reads something from the
terminal

• Understands placeholders

• Returns the number of items read in

Thursday, July 5, 12

Reading Something In

• Need a place to put it

• Adds a bit of complexity

Thursday, July 5, 12

Data vs. Data Location

unsigned char foo = 0;
foo; // what’s the value of foo?
&foo; // where is foo?

0 ??? ?? ? ??

foo

Thursday, July 5, 12

Key Difference

int input = 0;
scanf(“%i”, input);
...
scanf(“%i”, &input);

Thursday, July 5, 12

Simple Examples

int input1, input2;
char character;
...
scanf(“%i%i”, &input1, &input2);
scanf(“%i%c”, &input1, &character);
scanf(“%i %i”, &input1, &input2);

Thursday, July 5, 12

On Whitespace

• scanf will ignore whitespace

Thursday, July 5, 12

Format String

• Can have non-placeholders in the format
string

• Format string is a pattern of everything
that must be read in (whitespace treated
equally)

int input1, input2;
scanf(“%ifoo%i”, &input1, &input2);

Thursday, July 5, 12

scanf.c

Thursday, July 5, 12

Constants

Thursday, July 5, 12

Constants

• Values which never change

• Specific values are constants

•55

•27.2

•‘a’

•“foobar”

Thursday, July 5, 12

Constants

• Specifically in the program text

• Constant in that 52 always holds the same
value

• We cannot redefine 52 to be 53

Thursday, July 5, 12

Symbolic Constants

• Usually when programmers say “constant”,
they mean “symbolic constant”

• Values that never change, but referred to
using some symbol

• i.e. π (pi - 3.14...)

• Mapping between symbol and value is
explicitly defined somewhere

Thursday, July 5, 12

In C

• Use #define

• By convention, constants should be entirely
in caps

#define PI 3.14
...
int x = PI * 5;

Thursday, July 5, 12

Mutability

• Constants are, well, constant!

• Cannot be changed while code runs

#define PI 3.14
...
PI = 4; // not valid C!

Thursday, July 5, 12

What #define Does

• Defines a text substitution for the
provided symbol

• This text is replaced during compilation by
the C preprocessor (cpp)

Thursday, July 5, 12

Example #1

#define PI 3.14
...
int x = PI * 5;

Code

int x = 3.14 * 5;After
Preprocessor

Thursday, July 5, 12

Example #2

Code

3.14 = 4;After
Preprocessor

#define PI 3.14
...
PI = 4;

Thursday, July 5, 12

Best Practices

• Generally, all constants should be made
symbolic

• Easier to change if needed later on

• Gives more semantic meaning (i.e. PI is
more informative than 3.14...)

• Possibly less typing

Thursday, July 5, 12

Errors

Thursday, July 5, 12

Errors

• Generally, expected result does not match
actual result

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 5, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 5, 12

Syntax Error

• A “sentence” was formed that does not
exist in the language

• For example, “Be an awesome program”
isn’t valid C

Thursday, July 5, 12

Syntax Error

• Easiest to correct

• Compiler will not allow it

• *Usually* it will say where it is exactly

Thursday, July 5, 12

On Syntax Errors

• ...sometimes the compiler is really bad at
figuring out where the error is

#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

Thursday, July 5, 12

Reality
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

• Missing semicolon at line 4

Thursday, July 5, 12

GCC
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

syntax.c: In function ‘main’:
syntax.c:5: error: expected ‘;’ before
‘printf’

Thursday, July 5, 12

Ch
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

ERROR: multiple operands together
ERROR: syntax error before or at line 5
in file syntax.c
 ==>: printf("cow");
 BUG: printf("cow")<== ???

Thursday, July 5, 12

The Point

• Compilers are just other programs

• Programs can be wrong

• Programs are not as smart as people

Thursday, July 5, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 5, 12

Recall Linking

1: somethingFromHere();
2: somethingFromElsewhere();
3: somethingElseFromHere();

somethingFromHere

somethingElseFromHere

somethingFromElsewhere

Thursday, July 5, 12

Recall Linking

somethingFromHere

somethingElseFromHere

somethingFromElsewhere

Thursday, July 5, 12

Linker Errors

• What if somethingFromElsewhere is
nowhere to be found?

• Missing a piece

• Cannot make the executable

Thursday, July 5, 12

Example

int something();

int main() {
 something();
 return 0;
}

• int something(); tells the
compiler that something exists
somewhere, but it does not actually give
something

Thursday, July 5, 12

Example
int something();

int main() {
 something();
 return 0;
}

Undefined symbols for architecture
x86_64:
 "_something", referenced from:
 _main in ccM6c8aW.o
ld: symbol(s) not found for
architecture x86_64

Thursday, July 5, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 5, 12

Runtime Errors

• Error that occurs while the code is running

• Compilation and linking must have
succeeded to get to this point

Thursday, July 5, 12

Examples

• Overflow

unsigned char x = 255;
x = x + 1;

• Underflow

unsigned char x =0;
x = x - 1;

Thursday, July 5, 12

Examples

• Divide by zero (especially for integers!)

unsigned int x = 5 / 0;

• Wrong printf placeholder

printf(“%s”, 57);

Thursday, July 5, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 5, 12

Logic Errors

• It works!

• ...but it doesn’t do what you wanted

• Like getting the wrong order at a
restaurant

Thursday, July 5, 12

Examples

• Transcribed an equation incorrectly

• Using the wrong variable

• Lack of understanding of problem

• etc. etc. etc...

Thursday, July 5, 12

Logic Errors

• By far, the most difficult to debug

• It might be done almost correctly

• This is why testing is so important!

Thursday, July 5, 12

